On the Regularity of Semipermeable Surfaces in Control Theory with Application to the Optimal Exit-time Problem (part Ii)

نویسنده

  • PIERRE CARDALIAGUET
چکیده

In control theory, a semipermeable surface is an (in general nonsmooth) oriented surface that, on one hand, contains solutions (the so-called barrier solutions) of the controlled system and, on the other hand, may be crossed by the solutions of this system in only one direction. Without making any assumption on the regularity of the boundary of the semipermeable surface, we show that the barrier solutions contained in this semipermeable surface satisfy the Pontryagin principle, that this surface is a Lipschitz manifold, and that it is, locally, the graph of a semiconcave function. Applying these results to the optimal exit-time function from a given open set yields, without any controllability assumption at the boundary of the open set, that this function is semiconcave on an open dense subset of its domain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dually quasi-De Morgan Stone semi-Heyting algebras II. Regularity

This paper is the second of a two part series. In this Part, we prove, using the description of simples obtained in Part I, that the variety $mathbf{RDQDStSH_1}$ of regular dually quasi-De Morgan Stone semi-Heyting algebras of level 1 is the join of the variety generated by the twenty 3-element $mathbf{RDQDStSH_1}$-chains and the variety of dually quasi-De Morgan Boolean semi-Heyting algebras--...

متن کامل

Modeling of the Maximum Entropy Problem as an Optimal Control Problem and its Application to Pdf Estimation of Electricity Price

In this paper, the continuous optimal control theory is used to model and solve the maximum entropy problem for a continuous random variable. The maximum entropy principle provides a method to obtain least-biased probability density function (Pdf) estimation. In this paper, to find a closed form solution for the maximum entropy problem with any number of moment constraints, the entropy is consi...

متن کامل

Dually quasi-De Morgan Stone semi-Heyting algebras I. Regularity

This paper is the first of a two part series. In this paper, we first prove that the variety of dually quasi-De Morgan Stone semi-Heyting algebras of level 1 satisfies the strongly blended $lor$-De Morgan law introduced in cite{Sa12}. Then, using this result and the results of cite{Sa12}, we prove our main result which gives an explicit description of simple algebras(=subdirectly irreducibles) ...

متن کامل

The Exact Solution of Min-Time Optimal Control Problem in Constrained LTI Systems: A State Transition Matrix Approach

In this paper, the min-time optimal control problem is mainly investigated in the linear time invariant (LTI) continuous-time control system with a constrained input. A high order dynamical LTI system is firstly considered for this purpose. Then the Pontryagin principle and some necessary optimality conditions have been simultaneously used to solve the optimal control problem. These optimality ...

متن کامل

Designing a novel structure of explicit model predictive control with application in a buck converter system

This paper proposes a novel structure of model predictive control algorithm for piecewise affine systems as a particular class of hybrid systems. Due to the time consuming and computational complexity of online optimization problem in MPC algorithm, the explicit form of MPC which is called Explicit MPC (EMPC) is applied in order to control of buck converter. Since the EMPC solves the optimizati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997